Reguläre Sprachen: Unterschied zwischen den Versionen

Aus Byte-Welt Wiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(13 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 5: Zeile 5:
Reguläre Sprachen, werden durch reguläre Grammatiken, reguläre Ausdrücke und endliche Automaten (DFA bzw. NFA) erzeugt.
Reguläre Sprachen, werden durch reguläre Grammatiken, reguläre Ausdrücke und endliche Automaten (DFA bzw. NFA) erzeugt.


<u>
Seien <math> T\ , A\  </math> Nichtterminale
Abgeschlossen bzgl:  
und sei <math> a\ </math> ein Terminale, so gelten folgende Bildungsvorschriften:<br/>
<ui><math> </math> Vereinigung</ui>
 
<ui><math> </math>Schnitt</ui>
<math> T \rightarrow aA </math> Rechtsrekursion, <br/>
<ui><math> </math>Komplement</ui>
<math> T \rightarrow Aa </math> Linksrekursion, <br/>
<ui><math> </math>Verknüpfung</ui>
<math> A \rightarrow a </math>
<ui><math> </math>Sternhülle</ui>
 
</u>
Überführungsfunktion für einen DFA: <br/>
 
<math>L(M) = \{  x_1 ... x_n \in {\Sigma^*} \vert \exists q_1 ... q_{n-1} \in Z , q_n \in E\ : \delta (q_i,x_{i+1}) = q_{i+1} </math> für<math>\ i = 0, ... , n-1 \} </math>
 
 
<b>Abgeschlossen bzgl:</b>
<ul>
<li><math> \cup\ </math> Vereinigung</li>
<li><math> \cap\ </math> Schnitt</li>
<li><math> ^- </math>   Komplement</li>
<li><math> \circ\ </math> Verknüpfung</li>
<li><math> *\ </math> Sternhülle</li>
</ul>
 
<b>Komplement</b>
 
Bei einem Automat, der das Komplement akzeptiert, werden alle Nicht-Endzustände zu Endzuständen und umgekehrt.
 
<math> M = ( Z\ , \Sigma , \delta, q_0 , Z\ \backslash E\ ) </math> <br/>
 
 
 
<b>Schnitt</b> <br/>
 
<math>M = ( Z\ , \Sigma , \delta , p_0 , E\ ) </math> <br/>
<math>N = ( Z\ , \Sigma , \delta , q_0 , E\ ) </math> <br/>
<math> M\ \bigcap N\ = ( \Z_M \times \Z_N , \Sigma , \delta^* , (p_0, q_0) , E_M\ \times E_N\ ) </math> <br/>
 
<math> \delta^*( ( p,q ), a )  = (  \delta_M (p,a),  \delta_N (q,a)  )\ </math>
 
<b>Vereinigung</b> <br/>
 
<math> M \bigcup N = \overline{ \overline{M\ } \bigcap \overline{N\ } }  </math> ( de Morgansche Regel ) <br/>
 
 
<b>Verknüpfung</b> <br/>
 
<math> M \circ N = ( Z_1 \cup Z_2 , \Sigma , \delta , Q_1 , E ) </math>
 
<math> \delta ( p , a ) = \begin{cases} \delta_M( p ,a ) , p \in Z_1 \backslash E_1 \\ \delta_M ( p , a ) \cup \bigcup_{q \in Q_2} \delta_N ( q , a ) , p \in E_1  \\ \delta_N ( p , a ) , sonst \end{cases} </math>
 
<math>  E\ = \begin{cases}  E_1 \bigcup E_2 , Q_2 \bigcap E_2  \neq \emptyset  \\ E_2 , sonst \end{cases} </math> <br/>
 
<b>Kleensche Hülle </b>
 
<math> N^* = ( Z_1 \cup \{q_{neu}\} , \Sigma , \delta^* , Q_1 \cup \{q_{neu}\} , E_1 \cup \{q_{neu}\} ) </math><br/>
<math> \delta^*( p , a ) = \begin{cases}  \delta(p , a) \cup \bigcup_{q \in Q} \delta(q, a) , p \in E_1  \\ \delta( p , a ) , sonst \end{cases} </math> <br/>

Aktuelle Version vom 30. März 2008, 16:47 Uhr


Reguläre Sprache

[Bearbeiten | Quelltext bearbeiten]

Reguläre Sprachen, werden durch reguläre Grammatiken, reguläre Ausdrücke und endliche Automaten (DFA bzw. NFA) erzeugt.

Seien Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): T\ , A\ Nichtterminale und sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): a\ ein Terminale, so gelten folgende Bildungsvorschriften:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): T \rightarrow aA Rechtsrekursion,
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): T \rightarrow Aa Linksrekursion,
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): A \rightarrow a

Überführungsfunktion für einen DFA:

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): L(M) = \{ x_1 ... x_n \in {\Sigma^*} \vert \exists q_1 ... q_{n-1} \in Z , q_n \in E\ : \delta (q_i,x_{i+1}) = q_{i+1} fürFehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \ i = 0, ... , n-1 \}


Abgeschlossen bzgl:

  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \cup\ Vereinigung
  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \cap\ Schnitt
  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): ^- Komplement
  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \circ\ Verknüpfung
  • Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): *\ Sternhülle

Komplement

Bei einem Automat, der das Komplement akzeptiert, werden alle Nicht-Endzustände zu Endzuständen und umgekehrt.

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): M = ( Z\ , \Sigma , \delta, q_0 , Z\ \backslash E\ )


Schnitt

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): M = ( Z\ , \Sigma , \delta , p_0 , E\ )
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): N = ( Z\ , \Sigma , \delta , q_0 , E\ )
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): M\ \bigcap N\ = ( \Z_M \times \Z_N , \Sigma , \delta^* , (p_0, q_0) , E_M\ \times E_N\ )

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \delta^*( ( p,q ), a ) = ( \delta_M (p,a), \delta_N (q,a) )\

Vereinigung

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): M \bigcup N = \overline{ \overline{M\ } \bigcap \overline{N\ } } ( de Morgansche Regel )


Verknüpfung

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): M \circ N = ( Z_1 \cup Z_2 , \Sigma , \delta , Q_1 , E )

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \delta ( p , a ) = \begin{cases} \delta_M( p ,a ) , p \in Z_1 \backslash E_1 \\ \delta_M ( p , a ) \cup \bigcup_{q \in Q_2} \delta_N ( q , a ) , p \in E_1 \\ \delta_N ( p , a ) , sonst \end{cases}

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): E\ = \begin{cases} E_1 \bigcup E_2 , Q_2 \bigcap E_2 \neq \emptyset \\ E_2 , sonst \end{cases}

Kleensche Hülle

Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): N^* = ( Z_1 \cup \{q_{neu}\} , \Sigma , \delta^* , Q_1 \cup \{q_{neu}\} , E_1 \cup \{q_{neu}\} )
Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://api.formulasearchengine.com/v1/“:): \delta^*( p , a ) = \begin{cases} \delta(p , a) \cup \bigcup_{q \in Q} \delta(q, a) , p \in E_1 \\ \delta( p , a ) , sonst \end{cases}